ترکیب روش شبکههای عصبی مصنوعی و مدل هیدرودینامیکی برای پیشبینی دقیقتر جریان رودخانه
نویسندگان
چکیده مقاله:
در این تحقیق کاربرد روش سیستم عصبی مصنوعی در کاهش خطای مدل هیدرودینامیکی برای پیشبینی جریان رودخانه مورد بررسی قرارگرفته است. منطقه مورد مطالعه حوزه رینولدز کریک در جنوب غربی ایالت آیداهو در ایالات متحده آمریکا میباشد که دارای وسعتی معادل 239 کیلومتر مربع و اقلیم نیمه خشک است و به علت تغییرات بیش از حد بارندگی در نقاط مختلف این حوزه جریان رودخانه شدیداً متغیر است. در این تحقیق پس از کالیبراسیون و به کاربردن یک مدل هیدرودینامیکی یک بعدی برای پیشبینی وضعیت جریان در نقطهای در پاییندست رودخانه یک مدل سیستم عصبی مصنوعی به عنوان پیشبینی کننده خطای مدل هیدرودینامیکی مورد استفاده قرار گرفت. با پیشبینی این خطا نتایج مدل هیدرودینامیکی به میزان قابل توجهی به مقادیر واقعی نزدیکتر شد. لازم به ذکر است که قبل از کاربرد ترکیبی این دو روش (مدل هیدرودینامیکی و سیستم عصبی مصنوعی) هر یک از این روشها به تنهایی مورد استفاده قرار گرفته و نتایج حاصل از مقادیر واقعی مقایسه گردیده بود. نتایج حاصل از کاربرد ترکیبی این مدل از کیفیت به مراتب بالاتری نسبت به کاربرد هر یک از آنها به تنهایی برخوردار است.
منابع مشابه
ترکیب روش شبکه های عصبی مصنوعی و مدل هیدرودینامیکی برای پیش بینی دقیق تر جریان رودخانه
در این تحقیق کاربرد روش سیستم عصبی مصنوعی در کاهش خطای مدل هیدرودینامیکی برای پیش بینی جریان رودخانه مورد بررسی قرارگرفته است. منطقه مورد مطالعه حوزه رینولدز کریک در جنوب غربی ایالت آیداهو در ایالات متحده آمریکا می باشد که دارای وسعتی معادل 239 کیلومتر مربع و اقلیم نیمه خشک است و به علت تغییرات بیش از حد بارندگی در نقاط مختلف این حوزه جریان رودخانه شدیداً متغیر است. در این تحقیق پس از کالیبراسیو...
متن کاملتولید مصنوعی جریان رودخانه با استفاده از شبکههای عصبی مصنوعی
در این مطالعه قابلیت مدلهای شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی میشود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سریهای بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...
متن کاملترکیب روش هوش مصنوعی و مدل هیدرودینامیکی برای مدلسازی و پیش بینی جریان رودخانه (مطالعه ی موردی: رودخانه ی فیروزه- شاهجوب بجنورد)
در این تحقیق کاربرد روش سیستم عصبی مصنوعی در کاهش خطای مدل هیدرودینامیکی برای پیش بینی جریان رودخانه مورد بررسی قرار گرفته است. منطقه ی مورد مطالعه حوزه ی آبخیز رودخانه ی فیروزه- شاهجوب واقع در استان خراسان شمالی، شهرستان بجنورد می باشد که دارای وسعتی به اندازه ی 1233 کیلومتر مربع است. داده های دبی روزانه در دو ایستگاه، فیروزه در بالادست و باباامان در پایین دست از سال های 53-1352 تا 65-1364 موج...
15 صفحه اولپیشبینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکههای عصبی مصنوعی المانی (ENN)
برآورد صحیح آبدهی رودخانهها یکی از موارد مهم در پیشبینی خشکسالی، سیلاب، طراحی سازههای آبی، بهرهبرداری از مخازن سدها و کنترل رسوب میباشد. از اینرو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روشهای هوشمند مانند شبکههای عصبی مصنوعی و روشهای مختلف دادهکاوی بهره گرفتهاند. در این مطالعه، جهت پیشبینی جریان روزانه رودخانه اهرچای، از روشهای شبکه عصبی مصنوعی المانی (ENN) و قوانین درخت...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 15 شماره 1
صفحات 10- 20
تاریخ انتشار 2004-05-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023